Lockheed-Martin ORINCON

Tactical Approach To Computing and Communicating Sonar Performance Uncertainty

Kevin Heaney and Harry Cox
Capturing Uncertainty DRI Final Review
June 15th 2004

10 9:53

Philosophical Approach

- Measure what you can (with uncertainties)
- Model what you must.
- Use tactically relevant metrics to measure uncertainty and communicate it.
- NB Coherent TL overestimates the variability experienced in systems that average over space/time/frequency. (predicted location of nulls can't be trusted)
- Get the mean right, THEN worry about the variability.
- Match the complexity of the environmental parameterization with the degrees of freedom of the acoustic data.
- Provide confidence measure for performance prediction
- SONAR Equation: SE = SL + TL NL(beam or omni-DI)
 Detection made when SE DT(-3 dB) > 0

10 3:53

Procedure

- 1. Performance Prediction based upon archival environmental data.
- 2. Measure environment with associated uncertainty
 - 1. Ambient Noise measurement
 - 2. Sound Speed Measurements (could be MODAS)
 - 1. Build EOF's and generate random ensemble of sound speed profiles
 - 3. Geo-acoustic Inversion (via GAIT Rapid Geo-acoustic Characterization Algorithm)
 - 1. Perform the inversion multiple on multiple sources and develop statistics.
- 3. Compute statistics of acoustic observables:
 - 1. Incoherent TL vs. range/frequency
 - 2. Coherent TL
 - 3. Time Spread
 - 4. Striation Slope
- 4. Compute detection performance with measured noise, modeled TL uncertainty.
- 5. Communicate the system performance prediction to the operator.

Database errors in the East China Sea

Heaney, K.D., Active Rapid Geo-acoustic Characterization. IEEE Journal of Ocean Engineering, 2004. (in review)

Scenario

- Shallow water Mediterranean
- Towed line array passive detection
- Dynamic ambient noise field (omni = 78 dB)
- Range independent bathymetry.
- Downward refracting profile with mild internal waves.
- Data taken from BOUNDARY 2003 sea-test conducted by SACLANT (Dr. Peter Neilsen) and SPAWAR (Kevin Heaney)

10 3:53

Measured Acoustic Data

Ambient Noise (AN) Distributions

Archival Prediction

Sound Speed Measurements

Acoustic Observable Distributions - Sound Speed Variability

Integ

Rapid Geo-acoustic Characterization

- Measure acoustic observables from measured striations
 - Striation slope, striation spacing, RL slope vs range.
- Compute the observables for simple single homogeneous sediment with two free parameters (Cp, H)
- Determine the optimal environment.
- Results:

$$<$$
Cp>= 1565 m/s; σ_{Cp} = 15 m/s
 $<$ H>= 20 m; σ_{H} = 3m

Heaney, K.D., *Rapid Geoacoustic Characterization Using a Ship of Opportunity*. IEEE Journal of Ocean Engineering, **2004. 29**(1): p. 88-99.

Heaney, K.D., *Rapid Geoacoustic Characterization: Applied to Range-Dependent Environments*. IEEE Journal of Ocean Engineering, 2004. **29**(1): p. 43-50.

RGC results

Acoustic Observable Distributions Geo-Acoustic Variability

Integrated Sy

Computed Transmission Loss

Average Detection Performance

Conclusion

- Using a combination of measurements, inversions and modeling we have an approach to communicate the instantaneous (as well as time-averaged) uncertainty and confidence to the operator.
- In this benign environment, SVP and geo-acoustic variability are on the order of 0.5 dB (at 4 km) and detection range variability is on the order of 800m (at 7km).
- The ambient noise field is significantly more dynamic than the TL uncertainty.
- Coherent TL statistics can greatly over-estimate the system performance uncertainty.

Heaney and Cox,, A Tactical Approach to Environmental Uncertainty and Sensitivity. IEEE Journal of Ocean Engineering, 2004. submitted

10 3:53